
INTRODUCTION

AWIDE VARIETY OF DIETARY phytochemicals have been
suggested to block the initiation of cancer or to sup-

press its development (182). These agents exert their effects
by interacting with numerous cellular proteins that, in turn,
affect multiple steps in the pathways leading to tumorigene-
sis. Many of these molecular alterations involve the kinase
networks, such as mitogen-activated protein kinases, phos-
phatidylinositol 3-kinase (PI-3K), and protein kinase, that
maintain homeostasis in cells. These kinase pathways con-
verge to activate downstream transcription factors such as nu-
clear factor-�B (NF-�B) and activator protein 1. In fact, cur-
cumin (turmeric), resveratrol (grapes), genistein (soy),
(�)-epigallocatechin gallate (EGCG) (green tea), and other
plant phenols are thought to exert their antitumorigenic ef-
fects through the inhibition of various mechanisms described
in this review (Fig. 1). Furthermore, these plant polyphenols
may enhance the tumoricidal effects of chemotherapy and ra-
diotherapy, protect normal cells from therapy-induced dam-
age, and increase systemic bioavailability of chemotherapeu-

tic agents (Table 1). However, some of the evidence has come
from studies that used superphysiologic doses of these plant
polyphenols, and so these effects must be confirmed in clini-
cal trials before the agents can be recommended as safe ad-
junct treatments.

MULTIPLE SIGNALING PATHWAYS 
LEAD TO CHEMORESISTANCE 

AND RADIORESISTANCE

Reactive oxygen intermediates (ROI) expression

Potent inducers of both pro-apoptotic and prosurvival
pathways, such as members of the tumor necrosis factor
(TNF) superfamily, contribute to both the tumor cell death re-
sponse to anticancer treatments and to the development of re-
sistance to these treatments. These effects are mediated
through the production of ROI, which are also known as reac-
tive oxygen species (55). For example, TNF alters the mem-
brane permeability of mitochondria, leading to cytochrome c
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release and subsequent caspase activation, which, in turn,
leads to apoptosis. Furthermore, TNF-associated factor sig-
naling has been shown to be directly linked to the electron
transport mechanism in mitochondria and subsequent to ROI
production (37). A review placed ROI as a common upstream
component in TNF-induced apoptosis as well as in caspase, 
c-Jun N-terminal kinase, mitogen-activated protein kinase,
NF-�B, and activator protein 1 activation (55). Through NF-
�B activation, ROI has been shown to mediate prosurvival
signaling as well. Therefore, ROI mediates both pro-apop-
totic and anti-apoptotic signaling, but the precise mecha-
nisms that lead to these polar outcomes are not yet clear.

Chemotherapy and radiotherapy strongly induce TNF sig-
naling and in doing so use the production of ROI to induce
both apoptosis and resistance (Fig. 2). Thought to exert their
effects in large part through their antioxidant properties, plant
polyphenols may also use ROI in signaling (147).

NF-�B activation

The ubiquitously expressed transcription factor NF-�B is
involved in a wide spectrum of cellular responses, including
cell cycle control, apoptosis, and stress adaptation. Among
the many diseases linked to aberrant NF-�B activation, can-

TABLE 1. POLYPHENOLS THAT MAY MODULATE CHEMOTHERAPY AND RADIOTHERAPY

Polyphenol Reference

Genistein
Chemosensitization

Enhanced apoptosis induced by docetaxel and cisplatin in pancreatic cancer cells 103
Enhanced apoptosis induced by doxorubicin, etoposide, or cisplatin in lung cancer cells 95
Was synergistic with cyclophosphamide in a lung cancer mouse model 205
Enhanced cisplatin-induced apoptosis in five human melanoma cell lines 188
Potentiated �-lapachone-induced apoptosis of PC3 and LNCaP prostate cancer cells 92
Potentiated the effect of dexamethasone on cell cycle progression in liver and colon cancer cells 139
Enhanced the effects of cisplatin and, to a lesser extent, of vincristine in meduloblastoma cells 84
Enhanced the effects of tiazofurin in human leukemia cells 100
Enhanced the effects of tiazofurin in human ovarian carcinoma cells 99
Was synergistic with quercetin in ovarian carcinoma cells 169

Radiosensitization
Potentiated the effect of radiation on prostate carcinoma cells 65
Improved the efficacy of chemoradiotherapy in a murine lung tumor model 111
Enhanced radiosensitivity in human esophageal cancer cell lines 4
Enhanced �-irradiation-induced apoptosis and cell cycle arrest in K562 leukemia cells 138

Resveratrol
Chemosensitization

Enhanced paclitaxel-induced apoptosis of lung cancer cells 91
Reduced paclitaxel-induced apoptosis in human neuroblastoma SH-SY5Y cells 130
Reduced TNF-induced apoptosis in human leukemia cells 109
Reduced H2O2-induced apoptosis in human neuronal PC12 cells 73
Inhibited H2O2, vincristine-, daunorubicin-, and C2-induced apoptosis in human leukemia cells 2
Sensitized multiple myeloma cells and non-Hodgkin’s lymphoma cells to paclitaxel-induced apoptosis 25
Reduced H2O2-induced apoptosis in leukemia cells by inhibiting leukotriene B4 and prostaglandin E2 108

Radiosensitization
Enhanced �-radiation-induced apoptosis and cell cycle arrest of Hela and SiHa cells 216

Curcumin
Chemosensitization

Sensitized multiple myeloma cells to vincristine and melphalan 25
Potentiated the cytotoxic effects of doxorubicin, 5-FU, and paclitaxel in prostate cancer cells 67

(Continued)
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FIG. 1. Cellular molecules implicated in resistance to
chemotherapy and radiation therapy. PDGFR, platelet-
derived growth factor receptor.
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TABLE 1. CONTINUED

Polyphenol Reference

Radiosensitization
Sensitized PC3 prostate cancer cells to radiation through suppression of TNF production 41

Protective effects
Reduced lung toxicity in rats treated with whole-body radiation 191
Reduced radiation-induced genotoxicity in mice treated with whole-body radiation 192
Decreased acute toxicity from whole-body radiation in rats 71
Protected rats from doxorubicin-induced nephrotoxicity 200
Protected rats from doxorubicin-induced cardiotoxicity 199
Reduceed mucosal injury from trinitrobenzene sulfonic acid-induced colitis in mice 196
Inhibited camptothecin-, mechlorethamine-, and doxorubicin-induced apoptosis of breast cancer cells 176

Green tea polyphenols
Chemosensitization

Enhanced antitumor activities of other anthracyclines, cisplatin, and irinotecan in ovarian 180
sarcoma-bearing mice

Enhanced antitumor effect of doxorubicin in mice with ascites carcinoma 158
Enhanced inhibitory effects of doxorubicin against Ehrlich ascites carcinoma in mice (green tea) 159
Was synergistic with doxorubicin in mice with M5076 ovarian sarcoma 179
Was synergistic with doxorubicin in inhibition of hepatic metastasis of M5076 ovarian sarcoma in mice 158, 178, 179
Reversed MDR and increased doxorubicin concentration in mice with P388 leukemia 160
Increased pirarubicin concentration in M5076 ovarian sarcoma cells 181
Increased antitumor activity of idarubicin and reduced its toxicity in mice with P388 leukemia 161

Emodin
Chemosensitization

Enhanced arsenic trioxide-induced apoptosis in HeLa cells 208
Potentiated effects of cis-platinol, doxorubicin, and 5-FU in Merkel cell carcinoma cells (aloe-emodin) 52
Enhanced effects of paclitaxel on Her-2/neu-overexpressing breast cancer cells 213
Enhanced cytotoxic effects of cisplatin, doxorubicin, and etoposide on Her-2/neu-overexpressing

non-small cell lung cancer cells 210
CAPE

Protective effects
Protected rats from doxorubicin-induced cardiotoxicity 51
Protected rats from cisplatin-induced nephrotoxicity 135
Protected rats from bleomycin-induced lung fibrosis 136
Protected rats from ischemia-reperfusion kidney injury 61
Protected rats from radiation-induced inflammatory changes 106

Flavopiridol
Chemosensitization

Potentiated effects of mitomycin c in breast and gastric cancer cells 165
Was synergistic with paclitaxel, cytarabine, topotecan, doxorubicin, etoposide, and cisplatin in

non-small cell lung cancer cells 29
Enhanced doxorubicin-induced apoptosis in retinoblastoma protein-deficient sarcoma cells 101
Augmented CPT-11-induced apoptosis in Hct116 colon cancer cells 123
Increased sensitization to gemcitabine in gastrointestinal cancer cells 77

Radiosensitization
Potentiated �-radiation-induced apoptosis in colon and gastric cancer cells 78
Enhanced radiosensitivity of ovarian carcinoma cells 150

Silymarin
Chemosensitization

Potentiated doxorubicin cytotoxicity in P-glycoprotein-positive breast cancer cells (silymarin) 214
Enhanced doxorubicin-induced growth inhibition in human prostate cancer cells (silymarin) 195
Was synergistic with cisplatin and doxorubicin in breast cancer and ovarian carcinoma cells (silybin) 164

Protective effects
Protected rat cardiomyocytes from anthracycline-induced toxicity 42
May have protected rat heart membrane from doxorubicin-induced damage 148

Ginger
Protective effects

Protected rats and dogs from cisplatin-induced nausea 167, 168
Piperine

Effects on bioavailability
Increased bioavailability of propranolol and theophylline in humans 15
Enhanced bioavailability of aflatoxin B1 in rat tissues 6
Enhanced bioavailability of curcumin in rats and humans 173
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cer has been the major focus because of NF-�B’s role as a
central regulator of the inflammatory response, its regulation
of genes involved in cellular survival (Bcl-2, Bcl-xL, c and x
forms of inhibitor of apoptosis protein [IAP], and superoxide
dismutase) and tumor progression (intercellular adhesion
molecule 1, vascular cell adhesion molecule 1, endothelial
leukocyte adhesion molecule 1, cyclooxygenase-2 [COX-2],
inducible nitric oxide synthase [iNOS], and matrix metallo-
proteinase [MMP-9]). Furthermore, its constitutive activity
has been frequently elevated in many types of tumors, includ-
ing leukemia, lymphoma, prostate cancer, breast cancer,
colon cancer, melanoma, and head and neck cancers (54,
152). Ursolic acid and betulinic acid have been shown to
exert their effects through mechanisms that involve the inhi-
bition of NF-�B (172, 186). Also, NF-�B is activated by che-
motherapeutic agents and ionizing radiation, and can lead to
treatment-induced tumor cell resistance (45, 56, 79). Further-
more, the suppression of NF-�B by different methods can
sensitize tumor cells to both chemotherapy and radiotherapy.

In vitro and in vivo studies have shown that constitutive ac-
tivation of NF-�B inhibits chemotherapy-induced apoptosis
in a number of tumor types (23, 24, 202). For example, up-
regulation of NF-�B-inducible genes protected MDA-
MB-231 breast cancer cells from paclitaxel-induced and
radiation-induced apoptosis (129, 202), and chemotherapy-
induced NF-�B activation led resistance to conventional can-
cer treatment resistance (18, 20, 137, 202). In a recent study
of four tumor cell lines, each treated with different
chemotherapy regimens (doxorubicin, 5-fluorouracil [5-FU],
cisplatin, and paclitaxel), cell survival correlated with the
level of NF-�B activity induced by the drugs (43). In another
study, NF-�B-binding activity decreased in breast cancer
cells treated with anti-Her-2/neu antibody (Trastuzumale;
Herceptin), suggesting a role for NF-�B in the therapeutic ef-
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ficacy of this antibody combined with chemotherapy for pa-
tients with Her-2/neu-positive breast cancer (144). Others
studies have shown tumor regression due to tumor sensitiza-
tion to CPT-11 (irinotecan), a topoisomerase I inhibitor, in
mouse xenograft models that overexpress inhibitory subunit
of NF-�B (I�B�) (45, 203). Additional reports using aden-
ovirus-mediated gene transfection of I�B� demonstrated the
potentiation of chemotherapeutic efficacy in both in vitro and
in vivo models of gastrointestinal malignancies (46, 203),
human glioma cells (204), and pancreatic cancer cells (11).
Compared with cells without the super-repressor, fibrosar-
coma cells expressing the I�B� super-repressor were more
sensitive to radiation-induced apoptosis (17), and glioblas-
toma cell lines (A172, M054) expressing the super-repressor
were more susceptible to radiotherapy (206). Protease in-
hibitors are less specific but are a more clinically useful way
to examine the effects of NF-�B inhibition. In a preclinical
study, the use of protease inhibitors increased radiation-in-
duced apoptosis of lymphoma cells (93).

COX-2 expression

COX-2, an enzyme expressed largely in response to in-
flammatory disorders and cancer, mediates prostaglandin
production and is currently under clinical investigation as a
target for anticancer therapy (120, 125). Its presence has
been associated with more aggressive tumor phenotypes and
worse outcome for patients with breast cancer, colon cancer,
head and neck cancers, lung cancer, and pancreatic cancer.
Accumulating evidence suggest that COX-2 is involved in
multiple aspects of carcinogenesis, including maintenance of
tumor growth, facilitation of metastatic spread, and resis-
tance to various therapies (89, 116). As a result, selective in-
hibitors of COX-2, such as SC-236 and celecoxib, have been
used in vitro and in vivo to test whether its inhibition may
sensitize tumor cells to chemotherapy and radiotherapy. For
example, SC-236 increased tumor radioresponse in murine
tumor models and in a human glioma xenograft in nude mice
(87, 118, 142), and celecoxib enhanced the response of A431
human tumor xenografts in nude mice to radiation and
docetaxel chemotherapy, radiotherapy, or both (188). The
mechanisms that account for these findings and others are
not yet clear but may involve the elimination of prosta-
glandins as protective molecules in response to chemother-
apy and radiotherapy (117).

Bcl-2 expression

Bcl-2 is a member of the Bcl-2 family of proteins that reg-
ulates both pro-apoptotic and anti-apoptotic signaling in
cells. Bcl-2 itself is an anti-apoptotic protein that is inappro-
priately overexpressed in a number of solid and hematopoi-
etic tumors, and exerts its influence by enhancing cellular
survival (81), which contributes to resistance to conventional
treatments, including chemotherapy and radiotherapy (36).
Furthermore, several investigations have shown that inhibit-
ing Bcl-2 sensitizes tumor cells to chemotherapy and radio-
therapy. For example, transfection with the gene PTEN,
which down-regulates Bcl-2, potentiated the effects of radio-
therapy in several types of prostate cancer cells (156). An-
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FIG. 2. Chemotherapy and radiotherapy induce both pro-
apoptotic signaling, leading to cell death and treatment
sensitivity, and anti-apoptotic signaling, leading to in-
creased cell survival and treatment resistance. Plant
polyphenols may help increase sensitivity and inhibit the path-
ways leading to resistance.
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other study, using Bcl-2 antisense oligonucleotide, demon-
strated increased apoptosis and enhanced chemotherapeutic
efficacy in undifferentiated thyroid carcinomas (86). These
results and others (21, 62) have highlighted Bcl-2 as a poten-
tial target for chemosensitization and radiosensitization.

Survivin expression

Survivin is a member of the mammalian IAP family and
functions primarily to inhibit the apoptosis pathway by block-
ing caspase 9 activation (162, 170). Both in vitro and in vivo
experiments have demonstrated its cancer-inducing proper-
ties (16) and its overexpression in several malignant tissues
and its absence in most normal tissues (7, 8). Survivin has
been shown to be involved in angiogenesis and to be neces-
sary for the anti-apoptotic effect of vascular endothelial
growth factor (114, 132, 193, 215). Furthermore, high levels
of survivin have been associated with a high rate of tumor re-
currence, low overall patient survival, and high tumor resis-
tance to chemotherapy and radiotherapy (7). Cell sensitiza-
tion to therapies has been demonstrated in several studies:
Inhibition of survivin with a ribozyme or dominant-negative
molecule sensitized melanoma and pancreatic cancer cells to
radiation (12, 141); survivin inhibition sensitized breast
cancer cells to paclitaxel and doxorubicin (133, 201); and
survivin inhibition plus radiotherapy resulted in significantly
decreased survival of lung cancer cells (107).

Multidrug resistance (MDR) protein expression

MDR proteins and MDR-associated proteins are two sub-
families of the ATP-binding cassette family proteins that reg-
ulate the P-glycoproteins that remove drugs from cells at the
cost of ATP hydrolysis (49, 166). The relationship between
MDR protein expression and chemoresistance is fairly well
established (96, 185). For example, in vitro and in vivo inves-
tigations have suggested the involvement of MDR proteins in
multiple mechanisms that lead to chemoresistance in pros-
tate cancer (197). This result was consistent with that from a
study that used an NF-�B inhibitor to down-regulate the ex-
pression of MDR proteins, thereby leading to increased
apoptosis in prostate cancer cells (53). The association be-
tween MDR protein expression and radioresistance is less
clear. For example, cancer cells that expressed the MDR gene
were no more resistant to radiotherapy than their non-MDR
counterparts (57).

AKT expression

The protein kinase B/Akt pathway is a downstream effec-
tor of PI-3K and has been described as a mediator of anti-
apoptotic signaling in cancer cells. Akt has been shown to af-
fect cell cycle progression and foster tumorigenesis when
overexpressed (209). This overexpression may contribute to
chemoresistance and radioresistance. The ectopic expression
of constitutively active Akt1 resulted in enhanced resistance
of non-small cell lung cancer cells to a panel of chemothera-
peutic agents (68). In breast cancer cells, inhibition of the
PI-3K/Akt pathway led to enhanced paclitaxel, doxorubicin,
and 5-FU cytotoxicity (75), and dominant-negative expres-
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sion vectors sensitized the cells to the induction of apoptosis
by paclitaxel, doxorubicin, 5-FU, etoposide, and camp-
tothecin (88). However, in pancreatic cancer cells, the PI-
3K/Akt pathway did not seem to be involved in gemcitabine
resistance (11). Accumulating evidence has suggested that
the PI-3K/Akt pathway may also be a major contributor to
radioresistance (209). One report indicated that activated
Akt in bile duct cancer cells was associated with radioresis-
tance, as evidenced by the enhanced radiosensitization via
Akt inhibition (189). This report and another (112) indicated
the PI-3K/Akt pathway as a target for tumor sensitization to
radiotherapy.

Signal transducer and activator 
transcription (STAT)3 expression

STAT3 is a ubiquitously expressed member of the STAT
family of transcription factors that is activated by tyrosine
phosphorylation via upstream receptors that bind to growth
factors such as epidermal growth factor (EGF) and platelet-
derived growth factor and cytokines such as interleukin-6
(IL-6) (5, 97, 98). STAT3 has diverse biologic functions, in-
cluding cell growth regulation, apoptosis regulation, and cell
differentiation. STAT3 has also been shown to be consitu-
tively active in a number of human cancers and to be neces-
sary for tumor cell growth (32). Moreover, STAT3 may medi-
ate chemoresistance, and its inhibition may sensitize cells to
apoptosis. For example, STAT3 inhibition contributed to the
decreased survival of multiple myeloma cells (26), and it may
have sensitized pancreatic cancer cells to apoptosis (59).
Blockade of STAT3 using various techniques sensitized es-
trogen receptor-negative breast cancer cells to chemotherapy-
induced apoptosis (153). Finally, STAT3 inhibition with a
STAT3 antisense oligonucleotide enhanced radiation-induced
apoptosis in prostate cancer cells (36).

EGF receptor (EGFR) expression

EGFR is a transmembrane glycoprotein with intrinsic ty-
rosine kinase activity. On binding with EGF or transforming
growth factor-beta, EGFR regulates a signaling cascade that,
in turn, regulates cell growth and proliferation. EGFR over-
expression has been linked to aggressive tumor phenotypes,
poor patient prognosis, and poor tumor response to therapies
(113). For example, the magnitude of EGFR expression cor-
related with increased tumor chemoresistance and radiore-
sistance in a variety of in vivo tumors, including murine car-
cinoma, squamous cell carcinoma, ovarian adenocarcinoma,
hepatocarcinoma, and adenosquamous carcinoma (3, 119,
126). Use of the anti-EGFR antibody C225 greatly enhanced
the response of A431 human tumor xenografts in nude mice
to docetaxel, radiation, or both (119, 126). Other investiga-
tors also reported the increased sensitization of tumor cells
to radiotherapy through EGFR inhibition (28, 69, 70). Mech-
anisms that account for this effect by EGFR inhibitors are
becoming clearer with time, and likely involve sensitization
to treatment-induced apoptosis, inhibition of treatment-in-
duced repair mechanisms, and inhibition of tumor angiogen-
esis (120).
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BACKGROUND ON SELECTED
POLYPHENOLS

Genistein is a soy-derived isoflavone that acts as a tyro-
sine kinase inhibitor and has a structure with an affinity for
the estrogen receptor and androgen-mediated pathways (33).
Therefore, it is not surprising that it has received consider-
able attention as a chemopreventive agent in breast, prostate,
and other cancers (163). In fact, epidemiologic studies have
linked the lower incidences of breast and prostate cancers in
Asian populations than in non-Asian populations to signifi-
cant differences in diet, including a higher concentration of
soy isoflavones such as genistein. Genistein is thought to in-
hibit the growth of cancer cells by modulating genes related
to cell cycle control and apoptosis and is a potent inhibitor of
angiogenesis and metastasis. In vitro and in vivo investiga-
tions have shown that this mechanism may be mediated
through NF-�B inhibition (128). Furthermore, genistein com-
bined with chemotherapy and radiotherapy may enhance the
efficacy of these therapies.

Resveratrol (trans-3,5,4�-trihydroxystilbene) was first iso-
lated in 1940 as a constituent of the roots of white hellebore
(Veratrum grandiflorum O. Loes) but has since been found in
various plants, including grapes, berries, and peanuts. Re-
search in recent years has focused on the anticancer properties
of resveratrol, as suggested by its ability to suppress the pro-
liferation of lymphoid and myeloid cancers, multiple my-
eloma, breast cancer, prostate cancer, colon cancer, pancreatic
cancer, melanoma, head and neck squamous cell carcinoma,
ovarian carcinoma, and cervical carcinoma (14, 35, 50).

Curcumin, a diferuloylmethane derived from turmeric
(Curcuma longa), has been the subject of intense study as a
chemopreventive agent and as a complement to chemother-
apy and radiotherapy. Notable findings in recent years have
included its ability to suppress proliferation in a variety of
tumor cell types; down-regulate NF-�B target genes such as
COX-2, iNOS, MMP-9, urokinase-type plasminogen activa-
tor, and cyclin D1; inhibit the expression of growth factor re-
ceptors, including EGFR and human EGFR 2; and inhibit
several protein kinases involved in the signaling pathways
leading to tumorigenesis (1). Moreover, curcumin inhibits
NF-�B activation induced by various inflammatory stimuli
(54, 124, 151), the I�B kinase (IKK) activation needed for
NF-�B activation (17, 31, 122), and NF-�B-induced osteo-
clastogenesis (27). An epidemiologic study suggested that
low incidences of gastrointestinal malignancies in India may
be attributable to the presence of natural additives, including
curcumin, in the Indian diet (121).

Used as a medicinal agent in Asia for more than
4,000 years, green tea is derived from the leaves of Camellia
sinensis and is an efficacious chemopreventive agent and
modulator of chemotherapy (140, 182). Several investiga-
tions, including a phase I clinical trial (146), have demon-
strated a decreased relative risk of many cancers, including
lung, colorectal, pancreatic, and stomach cancers with the
consumption of green tea. Growing evidence from animal
studies has also suggested the chemopreventive potential of
green tea (140). Two components of green tea, EGCG and 
�-glutamylethylamide (theanine), have been the particular
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focus of ongoing research. Several other plant polyphenols
(e.g., emodin, caffeic acid phenethyl ester [CAPE], flavopiri-
dol, silymarin, ginger, and piperine) are currently under in-
vestigation and are discussed below.

SENSITIZATION OF TUMOR CELLS 
BY POLYPHENOLS TO

CHEMOTHERAPEUTIC AGENTS

Green tea polyphenols

Mounting evidence has suggested that the amino acid
theanine, a major component of green tea, plus chemotherapy
has a synergistic effect for a varity of cancers. An investiga-
tion of the combined effects of theanine and glutamate trans-
porter inhibitors on the antitumor activity of doxorubicin in
M5076 ovarian sarcoma-bearing mice revealed that, com-
pared to the doxorubicin-alone group, theanine significantly
enhanced the inhibitory effect of doxorubicin on tumor
growth and increased the drug’s concentration in the tumors
(188). Oral administration of theanine or green tea similarly
enhanced the antitumor activity of doxorubicin. Theanine
plus doxorubicin also suppressed the hepatic metastasis of
ovarian sarcoma. An increase in doxorubicin concentration
was not observed in normal tissues such as the liver and
heart. The investigators described novel mechanisms of en-
hancement of antitumor efficacy of doxorubicin via the
inhibition of glutamate transporters by theanine. Moreover,
theanine enhanced the antitumor activities of other anthracy-
clines, cisplatin, and irinotecan (188).

Another study showed that, compared with doxorubicin
alone, theanine plus doxorubicin enhanced the antitumor ef-
fect over twofold in mice with Ehrlich ascites carcinoma
(158). Furthermore, theanine caused an almost threefold in-
crease in the concentration of doxorubicin within the tumor,
which correlated with the increased efficacy of the drug
combination and decreased tumor weight (188). Consistent
with these results, theanine and doxorubicin acted synergis-
tically in mice with M5076 ovarian sarcoma, enhancing
tumor concentration of chemotherapy, inhibiting tumor
growth, and decreasing hepatic metastasis (159, 178, 179).
Theanine was also effective in reversing MDR in mice with
P388 leukemia by increasing the doxorubicin concentration
within the tumor and decreasing tumor weight (160). In both
the ovarian sarcoma and leukemia cells, theanine attacked
the same transport process for doxorubicin, elevated the dox-
orubicin concentration, and increased the doxorubicin-
induced antitumor activity. Other studies have also demon-
strated the inhibition of MDR-associated proteins by green
tea components (44, 66).

Like theanine, the green tea components—caffeine,
EGCG, and flavonoids—inhibit doxorubicin efflux from
Ehrlich ascites carcinoma cells. Thus, EGCG and flavonoids
may enhance doxorubicin-induced antitumor activity and in-
crease doxorubicin concentration in tumors by inhibiting the
efflux. These components in green tea probably exhibit low
toxicity, and green tea plus chemotherapy probably has few
adverse effects. Similar synergistic effects have been noted
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for theanine plus pirarubicin (181, 194), idarubicin (161),
cisplatin (155, 217), and CPT-11 (175). However, one report
found no association between intake of green tea and risk of
breast cancer in Japanese women (183).

Studies have demonstrated the potent chemopreventive ef-
fect of EGCG in several types of cancer cells. In the prostate
cancer cell lines LNCaP and DU-145, EGCG inhibited NF-
�B activation, thereby leading to increased apoptosis and de-
creased expression of the prometastatic genes encoding for
MMP-2 and MMP-9 (60, 63, 198). In human epidermoid car-
cinoma A431 cells, EGCG activated caspases, which led to
increased apoptosis and inhibition of NF-�B (60). In YCU-
H891 head and neck cancer cells and MDA-MB-231 breast
carcinoma cell lines, EGCG inhibited both constitutive NF-
�B activation and EGFR activation and strongly inhibited
vascular endothelial growth factor production (110). Also in
breast cancer cells, EGCG inhibited basal Her-2/neu receptor
tyrosine phosphorylation, leading to subsequent inhibition of
PI-3K, Akt, and NF-�B activation (145). In the lung cancer
cell line PC-9, EGCG inhibited NF-�B-inducing kinase, an
upstream kinase leading to I�B kinase and NF-�B activation
(134). Finally, in EGF- and 12-O-tetradecanoylphorbol 13-
acetate-stimulated mouse JB6 epidermal cells, EGCG inhib-
ited ultraviolet B-induced NF-�B-mediated transcription
(131). Taken together, these results suggested that the chemo-
preventive properties of EGCG may derive from the modula-
tion and inhibition of a variety of signaling pathways that
lead to NF-�B activation and tumorigenesis.

Genistein

Several reports have highlighted the enhanced efficacy of
chemotherapy when it is combined with several plant
polyphenols. Genistein has been shown to potentiate the ef-
fects of chemotherapy for numerous tumor types. In the pan-
creatic cancer cell line, treatment with genistein before doc-
etaxel or cisplatin administration enhanced tumor cell death
compared with treatment with either chemotherapeutic drug
alone. This effect may have been mediated by the inhibition
of NF-�B by genistein, causing increased apoptosis (188). In
EGFR-expressing lung cancer cells, genistein combined with
cisplatin, doxorubicin, or etoposide enhanced the antiprolif-
erative effects of these drugs and induced programmed cell
death (95). This result was consistent with that from another
report using a lung cancer mouse model to show the synergis-
tic effect of genistein and cyclophosphamide (205). In an-
other study using five human melanoma cell lines, genistein
plus cisplatin enhanced apoptosis in all cell lines versus ei-
ther treatment alone; furthermore, genistein significantly re-
duced levels of the anti-apoptotic proteins Bcl-2 and Bcl-xL
and increased levels of the pro-apoptotic protein Apaf-1
(188). In prostate cancer cell lines PC3 and LNCaP, genistein
plus �-lapachone resulted in more potent cell killing than ei-
ther treatment alone did (92). In liver and colon cancer cell
lines, genistein plus dexamethasone resulted in enhanced ex-
pression of p21WAF1/CIP1, an inhibitor of cyclin-dependent ki-
nase 2, thereby halting cell cycle progression (139). In medu-
loblastoma cells, genistein potentiated the effects of cisplatin
and, to a lesser extent, those of vincristine (84). In human leu-
kemia cells (188) and ovarian carcinoma cells (188), genis-
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tein plus tiazofurin resulted in greater cells growth inhibition
and increased cell differentiation compared to either treat-
ment alone. Finally, genistein and quercetin acted synergisti-
cally in ovarian carcinoma cells (169).

The chemopreventive outcomes of genistein in several
tumor types may be achieved by targeting an NF-�B-depen-
dent pathway. For example, in studies using MDA-MB-231
breast cancer cells and PC3 prostate cancer cells, genistein
inhibited cell growth and induced apoptosis via the down-
regulation of Akt and NF-�B pathways (58, 102). In T-cell
lymphoma cell lines, genistein increased pro-apoptotic cas-
pase 3 activity and reduced activity of the NF-�B-mediated
anti-apoptotic factors A1 and cIAP-1 (19). These observa-
tions were consistent with those from an in vivo investigation
of pancreatic cancer, in which genistein significantly im-
proved patient survival, almost completely inhibited metasta-
sis, and increased apoptosis by activating caspase 3 (34).
Other studies have shown that genistein inhibited NF-�B-
binding activity in human hepatocarcinoma cells (184), pros-
tate cancer cells LNCaP and PC3 (47), and human alveolar
epithelial carcinoma cells (38).

Resveratrol

Resveratrol has been shown to potentiate the apoptotic ef-
fects of cytokines, chemotherapeutic agents, and �-radiation.
One study assessed the in vitro biologic activity of resveratrol
in lung cancer cell lines by examining its effect on apoptosis
induced by paclitaxel (91). Simultaneous exposure to resvera-
trol and paclitaxel did not result in significant synergy, but
pretreatment with resveratrol (10 µM for 3 days) significantly
enhanced the subsequent antiproliferative effect of paclitaxel.
The study also examined the effects of resveratrol and pacli-
taxel on p21waf1, p27kip1, E-cadherin, EGFR, and Bcl-2 levels
in non-small cell lung cancer EBC-1 cells. Resveratrol (10
µM for 3 days) administered before paclitaxel increased
p21waf1 expression approximately fourfold. These results sug-
gested that lung cancer cells exposed to resveratrol have a
lowered threshold for killing by paclitaxel and, thus, that
resveratrol may be a compromising alternative therapy for
lung cancer (91).

Another study found that resveratrol modified the expres-
sion of apoptotic regulatory proteins and sensitized non-
Hodgkin’s lymphoma and multiple myeloma cell lines to
paclitaxel-induced apoptosis (74). Resveratrol down-regulated
the expression of anti-apoptotic proteins Bcl-xL and myeloid
cell differentiation factor 1 and up-regulated the pro-apoptotic
proteins Bax and Apaf-1. Furthermore, inhibition of Bcl-xL
(an NF-�B target gene) by resveratrol was critical for
chemosensitization because functional impairment of Bcl-xL
mimicked resveratrol-mediated sensitization to paclitaxel-
induced apoptosis (91). In contrast, another study found that
trans-resveratrol reduced cellular death in SH-SY5Y neurob-
lastoma cells exposed to paclitaxel by inhibiting paclitaxel-
induced activation of caspase 7 and the degradation of
poly(ADP-ribose) polymerase (91).

The contrasting effects of resveratrol may be dose-depen-
dent, whereby it potentiates the effects of cytokines and che-
motherapeutic agents at higher concentrations and inhibits
their effects at lower concentrations. At relatively low con-
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centrations, resveratrol abrogated TNF-induced cytotoxicity
and caspase activation (109) and attenuated H2O2-induced cy-
totoxicity, DNA fragmentation, and intracellular accumula-
tion of ROI (73). Furthermore, a recent report showed that
low concentrations of resveratrol (4–8 µM) inhibited caspase
activation, DNA fragmentation, and translocation of cy-
tochrome c induced by H2O2, vincristine, daunorubicin, etc.
(2). The effects of resveratrol at these levels were attributed to
increased intracellular superoxide concentration and reduced
drug-induced acidification. These results suggested that the
protective or inhibitory effects of resveratrol at low concen-
trations are secondary to its antioxidant mechanism.

Curcumin

Several studies have shown that curcumin sensitizes cells
to chemotherapy. One report showed that curcumin down-
regulated NF-�B and sensitized multiple myeloma cells to
vincristine and melphalan. Furthermore, the NF-�B target
genes Bcl-2, Bcl-xL, cyclin D1, and IL-6 were down-
regulated by curcumin, leading to the suppression of prolif-
eration and arrest of cells at the G1/S phase of the cell cycle
(25). In another study, curcumin potentiated the cytotoxic ef-
fects of doxorubicin, 5-FU, and paclitaxel in prostate cancer
cells, and suppressed both the constitutive and TNF-induced
activation of NF-�B (67). Likewise, doxorubicin-induced
NF-�B activation was attenuated by curcumin (43). Cur-
cumin has also been shown to modulate the activity of the
MDR genes, thereby suppressing drug efflux by P-glycopro-
tein and leading to chemosensitization (10, 105). These re-
sults, when taken together, support the further investigation
of curcumin plus chemotherapeutic drugs as a synergistic
therapy.

Emodin

Emodin may sensitize cancer cells to chemotherapy. For
example, it sensitized HeLa cells to arsenic trioxide via gen-
eration of ROI and ROI-mediated inhibition of two major
prosurvival transcription factors, NF-�B and activator protein
1 (208), and it effected apoptosis in human promyelo-
leukemic HL-60 cells by inducing caspase 3, but indepen-
dently of ROI (40). In a study using several chemotherapeutic
agents including cis-platinol (abiplastin), doxorubicin (adri-
ablastin), 5-FU, and tyrosine kinase inhibitor STI 571, aloe-
emodin potentiated their inhibitory effects on Merkel cell
carcinoma cells (52). In cholangiocarcinoma cells and epithe-
lial stem-like cells, emodin and celecoxib synergistically sup-
pressed cell growth and increased activation of caspases 9
and 3; this mechanism was suggested to work through Akt in-
hibition (94). In Her-2/neu-overexpressing breast cancer
cells, emodin inhibited Her2/neu tyrosine kinase activity,
suppressed cell growth, induced cell differentiation, and sen-
sitized cells to paclitaxel chemotherapy (211, 212, 213). In
Her-2/neu-overexpressing non-small cell lung cancer cells,
emodin suppressed cell proliferation, reduced Her-2/neu ty-
rosine kinase activity, and enhanced the inhibitory effects of
cisplatin, doxorubicin, and etoposide on cell proliferation
(210). However, one study showed no chemosensitizing effect
of emodin in ovarian cancer cells (64).
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Flavopiridol

Flavopiridol potentiates the effects of chemotherapy in
several types of cancer. For example, flavopiridol potentiated
the cytotoxic effects of mitomycin c by promoting drug-
induced apoptosis in breast and gastric cancer cells; this ef-
fect was dependent on the order of treatment (165). An inves-
tigation using non-small cell lung cancer cells revealed that
the sequence of administration was important to the sensitiza-
tion effects of flavopiridol: Flavopiridol enhanced the cyto-
toxic effects of paclitaxel, cytarabine, topotecan, doxoru-
bicin, and etoposide only when administered after treatment;
only flavopiridol plus cisplatin showed sequence-independent
synergy (29). Flavopiridol sensitized retinoblastoma protein-
deficient sarcoma cells to doxorubicin-induced cell killing
(101) and colon cancer xenografts cells to CPT-11 through
activation of caspase 3 and cleavage of anti-apoptotic factors
(123). Furthermore, flavopiridol enhanced the induction of
apoptosis by gemcitabine in human pancreatic, gastric, and
colon cancer cell lines (77). The mechanism accounting for
the sensitization effects of flavopiridol may involve its inhibi-
tion of NF-�B. Indeed, in one study, flavopiridol inhibited
NF-�B, which in turn down-regulated cyclin D1, COX-2, and
MMP-9 (187). Similarly, flavopiridol inhibited NF-�B-
dependent gene transcription and enhanced TNF- and TNF-
related apoptosis-inducing ligand-induced cytotoxicity (85).
Yet another study showed that flavopiridol enhanced tumor
cell apoptosis by inhibiting survivin phosphorylation (201).

Silymarin

Silymarin may potentiate the effects of chemotherapy on
cancer. In MDR breast cancer cells, it potentiated doxoru-
bicin cytotoxicity by inhibiting P-glycoprotein ATPase activ-
ity, which is responsible for cellular efflux of cytotoxic sub-
stances (214). This observation was consistent with a recent
report demonstrating that silymarin and resveratrol signifi-
cantly increased breast cancer-resistant protein substrates in
breast cancer-resistant protein-overexpressing cells (44). An-
other study demonstrated the synergistic effects of silybin
plus cisplatin or doxorubicin in breast cancer and ovarian
cancer cells (164). Likewise, silibinin strongly synergized the
growth-inhibitory effect of doxorubicin in prostate cancer
cells and was associated with cell cycle arrest (195).

SENSITIZATION OF TUMOR CELLS BY
POLYPHENOLS TO RADIATION

Genistein

Genistein and radiation have been suggested to be syner-
gistic. In prostate cancer cells, genistein significantly inhib-
ited DNA synthesis, cell growth, and colony formation and
potentiated the effect of low doses of photon (200–300 cGy)
or neutron (100–150 cGy) radiation, the latter effect being
more pronounced with the combined treatment than with
genistein or radiation alone (65). In an in vivo murine lung
cancer model, chemoradiotherapy plus genistein resulted
in significantly lower tumor volume, microvessel density,
and vascular endothelial growth factor level than did
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chemoradiotherapy alone (111). In human esophageal cancer
cell lines, genistein greatly enhanced radiosensitivity by sup-
pressing radiation-induced activation of the survival signals
Akt and p42/p44 extracellular signal-regulated protein kinase
(4). Finally, in a Bcr/abl-positive leukemic cell line, genistein
increased radiation-induced apoptosis and promoted arrest of
the G2 phase cell cycle (138). 

Resveratrol

Resveratrol may induce radiosensitization. Reports have
suggested that increased activation of NF-�B and up-
regulation of NF-�B-mediated expression of COX-2 and of
5-lipooxygenase (5-LOX) contribute significantly to radiore-
sistance (39, 190) and that inhibition of NF-�B, COX-2, and
5-LOX induces radiosensitization (30, 149, 157). Resveratrol
has been shown to down-regulate NF-�B (109), COX-2
(177), and 5-LOX (108). Using clonogenic cell survival as-
says, one study showed that pretreatment with resveratrol en-
hanced HeLa and SiHa cell killing and induced an early S
phase cell-cycle checkpoint arrest after the cells were ex-
posed to ionizing radiation (216).

Curcumin

Resistance to radiation was suggested in one study to be
caused by increased expression of NF-�B-induced prosur-
vival genes, such as Bcl-2 and Bcl-xL, in response to radiation
(124). In that investigation, curcumin plus radiation inhibited
NF-�B activation in DU-145 and LNCaP prostate cancer
cells and resulted in down-regulation of Bcl-2, and curcumin
alone enhanced caspase activation and cytochrome c release
in both cell types, leading to increased apoptosis. Curcumin
has also been shown to sensitize PC3 prostate cancer cells to
radiation (41).

Green tea

A few studies have suggested that EGCG could modulate
radiotherapy. A study using human embryonic endothelial
cells found that ionizing radiation induced expression of pro-
angiogenesis genes membrane type 1-MMP and caveolin-1
and that this expression was abrogated by pretreatment with
EGCG (9). These results demonstrated that radiotherapy,
which is better known for its ability to promote cancer cell
death, may increase the expression of NF-�B-mediated target
genes that may be inhibited by EGCG (48, 143). Another in-
vestigation showed that EGCG suppressed oncogenic trans-
formation of mouse embryonic fibroblast C3H10T1/2 cells
(90).

Flavopiridol

Growing evidence suggests that flavopiridol may sensitize
tumor cells to radiation. In one study, flavopiridol signifi-
cantly enhanced the induction of apoptosis by radiation in
colon and gastric cancer cells; this effect was optimal when
flavopiridol followed the radiation treatment (78). Other in-
vestigations showed that flavopiridol strongly enhanced the
response of ovarian carcinoma cells to radiation and sug-
gested that the underlying mechanisms included inhibition of
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sublethal DNA damage repair and cell cycle redistribution; in
addition, transcriptional regulation by flavopiridol may have
been involved (78).

POLYPHENOLS PROTECTS 
NORMAL CELLS/ORGANS 

FROM CHEMO/RADIOTHERAPY

Curcumin

Several reports have also identified curcumin as a potent
protector against radiation. Oral administration of curcumin
(200 µmol/kg) significantly reduced lung toxicity in rats
treated with whole-body radiation (10 Gy in five fractions)
(191), and curcumin reduced liver and serum lipid peroxida-
tion in rats treated with radiation. In adition, reduced radiation-
induced genotoxicity (chromosomal damage) was observed
in mice treated with oral curcumin (400 mmol/kg) plus
whole-body radiation (1.5–3.0 Gy) (192). In another study,
dietary curcumin significantly decreased acute toxicity from
whole-body radiation in rats and decreased the incidence of
mammary and pituitary tumors at 1-year follow-up (71).
These findings, when taken together, demonstrated that cur-
cumin is a promising radioprotective agent and warrants fur-
ther investigation.

Curcumin has been shown to protect cells from doxoru-
bicin-induced renal injury (200), cardiotoxicity (199), and
gastrointestinal injury (196). These protective effects could
be secondary to the suppression of oxidative stress and in-
flammatory damage (80). One study revealed that curcumin
inhibited camptothecin-, mechlorethamine-, and doxoru-
bicin-induced apoptosis in tissue cultures of MCF-7, MDA-
MB-231, and BT-474 human breast cancer cells by up to
70%; inhibition occurred after relatively brief 3-h exposures
to curcumin, or at curcumin concentrations of 1 µM (176). In
an in vivo model of human breast cancer, dietary supple-
mentation with curcumin significantly inhibited cyclophos-
phamide-induced tumor regression, and it was concluded that
dietary curcumin could inhibit chemotherapy-induced apop-
tosis by inhibiting reactive oxygen species generation and
blocking of c-Jun N-terminal kinase function. However, be-
cause NF-�B is a major regulator of the transcriptional re-
sponse to cellular oxidative stress (54), it is tempting to be-
lieve that the suppression of NF-�B-induced gene expression
is responsible, at least in part, for these therapeutic effects.

CAPE

Several reports have indicated that CAPE has strong
chemoprotective properties. Our investigation demonstrated
that pretreatment with CAPE significantly attenuated dox-
orubicin-induced cardiotoxicity in rats and suggested that
these effects may have been due to its antioxidant properties
(51). The free-oxygen-radical scavenging properties of CAPE
in rats account for its protective effects on renal tissue treated
with cisplatin (135) and against lung toxicity after exposure
to bleomycin (136). CAPE also protected rat renal cells from
ischemia-reperfusion injury (61). CAPE has been shown to
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inhibit NF-�B (127), which may account for its chemopre-
ventive effects in intestinal, colon, skin, and liver cancers and
reduce inflammation in rats exposed to radiation (106). Fur-
thermore, CAPE suppressed COX-2 expression in human
oral epithelial cells and in a rat model of inflammation (115).
It may also help to prevent cancer progression by inhibiting
angiogenesis, tumor invasion, and metastasis in mice (104)
and, when combined with sulindac, by suppressing lung ade-
nocarcinoma motility (171).

Silymarin

Silymarin appears to protect rat cardiomyocytes against
anthracycline-induced oxidative stress, perhaps through its effects
on cell membrane stabilization (176). These results were consis-
tent with those from another report that suggesed silymarin may
prevent doxorubicin-mediated damage to rat heart membrane,
possibly through a free-radical scavenging mechanism (148).

Ginger

Ginger may prevent chemotherapy and radiotherapy-
induced nausea. In shrews, rats, and dogs, ginger inhibited
chemotherapy-induced gastric emptying and showed compa-
rable results to standard antiemetic compounds (167, 168,
207). Furthermore, ginger reduced radiation-related sickness
and free-radical production in mice (72).

ENHANCEMENT OF DRUG
BIOAVAILABILITY BY POLYPHENOLS

Piperine

Piperine, an ingredient of black pepper, increases the
bioavailability of chemotherapeutic drugs. A study using he-
patic tissue in rats demonstrated that piperine was a nonspe-
cific inhibitor of drug metabolism and discriminated little be-
tween different cytochrome P-450 forms (13), and another
study found that it modified the rate of glucuronidation by
lowering endogenous UDP-glucuronic acid content and in-
hibiting transferase activity (174). This observation was con-
sistent with that of another report that suggested piperine was
a potent inhibitor of UDP-glucose dehydrogenase in rats and
that its effect on glucuronidation was stronger in the in-
testines than in the liver (154). In a clinical crossover study in
which six subjects in each group received a single dose of
propranolol or theophylline alone or piperine, piperine en-
hanced the systemic availability of oral propranolol and theo-
phylline (15). In rat jejunum cells, piperine significantly
stimulated �-glutamyl transpeptidase activity, enhanced the
uptake of radiolabeled L-leucine, L-isoleucine, and L-valine,
and increased lipid peroxidation, suggesting that piperine
may increase intestinal permeability through interaction with
the mucosal lipid environment (76). These results were con-
sistent with those from studies that showed that piperine
modulates membrane dynamics and permeation characteris-
tics and results in an increase in the small intestine absorptive
surface, thereby enabling efficient permeation through the
epithelial barrier (82, 83). Piperine was also shown to inhibit
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both the drug transporter P-glycoprotein and the major drug-
metabolizing enzyme CYP3A4, in vitro, indicating that
dietary piperine could affect plasma concentrations of 
P-glycoprotein and CYP3A4 substrates in humans (22).
Using rat liver, another study showed that piperine markedly
inhibited aflatoxin metabolism in vitro and in vivo, suggest-
ing enhanced aflatoxin bioavailability (6). Piperine was also
shown to enhance curcumin bioavailability in both rats and
humans (173). These results, when taken together, warrant
the further investigation of piperin as a supplement to chemo-
therapeutic drugs to enhance their bioavailability.

CONCLUSIONS

Cancer is a multifactorial disease that, in many cases, re-
quires multimodal therapy, including chemotherapy and ra-
diotherapy. The mechanisms for modulation of signaling
pathways that account for the efficacy of these treatments
have become increasingly clear in recent years, leading to the
clinical and laboratory study of numerous biologic modifiers
that may increase their potency and reduce their adverse ef-
fects. Despite extensive use for thousands of years because of
their alleged medicinal value, plant polyphenols have only re-
cently received significant attention in the literature for their
ability to modulate a number of signaling pathways that lead
to the initiation and progression of cancer. The ability of
these products to sensitize tumor cells to chemotherapy and
radiotherapy often correlates with their ability to inhibit well-
studied molecular markers. The data are still limited, but the
results appear promising, and the use of plant polyphenols as
potential modulators of chemotherapy and radiotherapy de-
serves further investigation.
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ABBREVIATIONS

CAPE, caffeic acid phenethyl ester; COX-2, cycloxyge-
nase-2; EGCG, (�)-epigallocatechin gallate; EGF, epidermal
growth factor; EGFR, epidermal growth factor receptor; 
5-FU, 5-fluorouracil; IAP, inhibitor of apoptosis protein;
I�B�, inhibitory subunit of nuclear factor-�B; IL-6, inter-
leukin-6; iNOS, inducible nitric oxide synthase; 5-LOX, 
5-lipooxygenase; MDR, multidrug resistance; MMP, matrix
metalloproteinase; NF-�B, nuclear factor-�B; PI-3K, phos-
phatidylinositol 3-kinase; ROI, reactive oxygen intermedi-
ates; STAT, signal transducer and activator of transcription;
TNF, tumor necrosis factor.
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